home *** CD-ROM | disk | FTP | other *** search
- //-------------------------------------------------------------------//
-
- // Synopsis: A tridiagonal matrix with real, sensitive eigenvalues.
-
- // Syntax: lesp ( N )
-
- // Description:
-
- // A is an N-by-N matrix whose eigenvalues are real and smoothly
- // distributed in the interval approximately [-2*N-3.5,
- // -4.5]. The sensitivities of the eigenvalues increase
- // exponentially as the eigenvalues grow more negative. The
- // matrix is similar to the symmetric tridiagonal matrix with the
- // same diagonal entries and with off-diagonal entries 1, via a
- // similarity transformation with D = diag(1!,2!,...,N!).
-
- // References:
- // H.W.J. Lenferink and M.N. Spijker, On the use of stability regions in
- // the numerical analysis of initial value problems,
- // Math. Comp., 57 (1991), pp. 221-237.
- // L.N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991,
- // Proceedings of the 14th Dundee Conference,
- // D.F. Griffiths and G.A. Watson, eds, Pitman Research Notes in
- // Mathematics, volume 260, Longman Scientific and Technical, Essex,
- // UK, 1992, pp. 234-266.
-
- // This file is a translation of lesp.m from version 2.0 of
- // "The Test Matrix Toolbox for Matlab", described in Numerical
- // Analysis Report No. 237, December 1993, by N. J. Higham.
-
- // Dependencies
- rfile tridiag
-
- //-------------------------------------------------------------------//
-
- lesp = function ( n )
- {
- local (x, T)
-
- x = 2:n;
- T = tridiag( ones(size(x))./x, -(2*[x, n+1]+1), x);
-
- return T;
- };
-